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Abstract

In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel Search
Package), a new software platform which facilitates combining multiple optimization routines into a

single, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The framework

is designed such that existing optimization source code can be easily incorporated with minimal
code modification. By maintaining the integrity of each individual solver, the strengths and code

sophistication of the original optimization package are retained and exploited.
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Chapter 1

Motivation

We are interested in solving the general nonlinear optimization problem of the form

minimize  f(x)

. (1.2)
subjectto xe Q

wheref : IR" — IRandQ c IR" denotes set of feasible points. It is often the characteristiCstbat
dictate appropriate methods of solution. For generality, in this document, we set no restrictions on
Q and allow it to be described by bound, linear, and/or nonlinear constraints.

Picking a suitable optimization solver for 1.1 is quite challenging and has been the subject of
many studies and much debate. This is because each solver comes with inherent strengths and
weaknesses. For example, one may be global with slow local convergence properties. Another
may have fast local convergence but is unable to perform global searches of the feasible region.
In order to take advantage of the benefits of more than one solver and to try to overcome their
shortcomings, two or more methods may be combined, formihgkaid. Hybrid optimization
is a popular approach in the combinatorial optimization community, where metaheuristics (such
as genetic algorithms, tabu search, ant colony, variable neighborhood search, etc.), are combined
to improve robustness and blend the distinct strengths of different approaches [1]. More recently
metaheuristics have been combined with deterministic methods (such as pattern search) to form
hybrids that simultaneously perform global and local searches [4, 10, 35, 45, 46, 48, 49].

Hybrid algorithms are ideal for problems in which the given feasible region consists of several
subregions, each suited to a different solver. For example, solver A may be able to handle noise
and undefined points while solver B may excel in smoother regions with smaller amounts of noise.
Hence solver A by itself may be capable but unacceptably slow at finding a solution, whereas solver
B may be unable to determine a solution given an arbitrary starting point. However, as a hybrid,
solver A can be used to navigate the regions of high noise and reach a less complicate region where
solver B can then be applied for fast convergence.

The HOPSPACK (Hybrid Optimization Parallel Search Package) software platform was created
to facilitate the hybridization of multiple optimization routines into a single algorithm that sup-
ports parallel function evaluations. The framework was designed such that existing optimization
source code may easily be incorporated with minimal modification. This approach allowed us to
overcome the difficulties inherent in intrusive integration of multiple software packages including
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proprietary or unavailable source code and degraded quality of the original code due to extensive
editing. Moreover, the HOPSPACK framework allows for optimization routines to be run simulta-
neously instead serially to facilitate the sharing of intermediate objective and constraint information
between solvers. Moreover, this approach can exploit load balance problems of individual solvers
to reduce overall latency time.

The HOPSPACK software platform allows for the hybridization of both serial and parallel meth-
ods. This allows the combination of solvers without regard for the computationally effort required to
generate new iterates. For example, given two solvers where one is slow to generate new trial points
and the other is fast, the slower solver is prevented from bottle-necking the optimization process by
moving the point generation process to a separate processor.

This paper describes the basics of HOPSPACK. Chapter 2 reviews the creative history and
development of HOPSPACK from its roots to its current state. Chapter 3 gives an overview of
a classification scheme for hybrid methods so that the reader can understand where this work fits
into the larger body of literature on this topic. In Chapter 4, summaries of the methods currently
implemented in HOPSPACK are given. Chapter 5 reviews the software paradigm of HOPSPACK.
Finally in Chapter 7, we discuss the future directions of the software.



Chapter 2

HOPSPACK: A History

Before delving into the details of the HOPSPACK software, it is helpful to first understand the
foundation of the research in the area of hybrid optimization. Therefore, we include those details
here and encourage the reader to peruse the referenced papers and reports for additional information.

The basis of HOPSPACK is the combination of a parallel direct search method and a second
sampling scheme. This idea was first tested using Asynchronous Parallel Pattern Search (APPS),
a software described in detail in Chapter 4 and in [22]. This approach has its roots in an LDRD
project carried out in FY04 and FYO05 by Pl Joe Castro called MFO. As part of this project, APPS
was placed in an an oracle framework to achieve the goals of combining multiple models. In opti-
mization methods, oracles are used to predict points at which a decrease in the objective function
might be observed. Analytically, an oracle is free to choose points by any finite process. (See [25]
and references therein.) Note these points are given in addition to those generated by the basic
pattern search and therefore,convergence is not adversely affected. The details of this project, the
software implementation of the oracle within APPSPACK and some results can be found in [3] and
in [19].

The positive results observed in the MFO project prompted some new ideas in FY06 as part
of the PRIDE LDRD lead by Monica Martinez-Canales. The goal of this project was to make
the Sandia simulation-based design process tractable and reduce the computational costs associated
with design optimization. This project built on the APPS-oracle software design by introducing
the concept of a Gaussian Process as an oracle. In conjunction with statisticians collaborators, a
proof-of-concept code was implemented and tested. These results are presented in [17] and in the
project final report [33]. Note that this aspect of the pride project was a first step towards creating an
appropriate optimization under uncertainty algorithm which would allow the user to perform both
calibration and uncertainty quantification at the same time.

In FY07, HOPSPACK hit its stride. Thanks to funds from two different ASC projects (ASC-
V&V and ASC-Outer Loop), a more robust software implementation of the APPS-oracle design
was started. It was during these two years that HOPSPACK grew to its current state. Moreover,
we were able to demonstrate its usefulness for a Sandia application as shown in [20,43]. These
successes prompted the DAKOTA development team to investigate the inclusion of this approach
to hybridization in the DAKOTA toolkit. These successes prompted renewed support from ASC in
FYO08 as well as some support from an ASCR project focused on derivative-free optimization.
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Chapter 3

Classifying Hybrid Methods

The HOPSPACK software is an example of a hybrid optimization scheme. To better understand
its functions, we put it in the context of a general classification scheme. Raidl [36, 37] outlines a
method for categorizing hybrid optimization methods using four main characteristics: 1) class of
algorithms used to form hybrids, 2) level of hybridization, 3) order of execution, and 4) control
strategy. Although this classification scheme was devised to describe metaheuristics used by the
combinatorial optimization community, it is also applicable here and thus we use it to describe
HOPSPACK.

3.1. Class of algorithms

Currently, HOPSPACK includes four algorithms: a generating set search (GSS), a deterministic
sampling, Latin Hypercube sampling, and a Gaussian process. Each of these methods are described
in detail in Chapter 4.

HOPSPACK originated in a project whose aim was to solve an optimization problem in which
computing the objective function value relied on the output of a numerical simulator. Derivatives
were unavailable and approximate derivatives were unreliable. A variety of derivative-free opti-
mization methods have emerged and matured over the years to address such problems, but for this
problem, none could both sufficiently sample the design space while limiting the computational
burden. Therefore, we chose to combine two methods— one computationally inexpensive and one
with robust sampling. This idea is the basis of HOPSPACK and defines the current procedure in
which the methods are running simultaneously and the GSS is constantly updating itself with the
best point found by any method. Future plans for HOPSPACK include generalizing this framework
and are discussed in more detail in Section 6.

3.2. Level of Hybridization

Hybrid algorithms can classified as loosely or tightly coupled. In general, loosely coupled ap-
proaches retain the individual identities of the methods being hybridized. In contrast, tightly coupled
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hybrids exhibit a strong relationship between the individual pieces and may share components or
functions [37]. The HOPSPACK platform facilitates loosely coupled methods in that the individual
components essentially run independently of one another. Components are in fact interchangeable.

Loosely coupled hybrids are advantageous from both a software development and theoretical
perspective. Because significant work is required to develop a single state-of-the-art optimization
routine, it would be impractical and bug prone to attempt to re-implement existing methods as part
of a tightly coupled algorithm. Instead, each method used in the hybrids described in this paper use
the original source code with minimal changes. This approach also keeps theoretical convergence
properties intact.

3.3. Order of Execution

The order of execution of hybrid algorithms can either be sequentially or parallel. Sequentially
hybrid methods string together a set of algorithms head to tail, using the results of a completed
run of one algorithm to seed the next. From this perspective it is often unclear whether or not
the previously executed algorithms should be viewed simply as a preprocessing step, or if ensuing
algorithm runs should be viewed as post-processing. On the other hand, parallel hybrids execute the
individual methods simultaneously and can thus be made to be collaborative and share information
dynamically to improve performance. From this perspective, HOPSPACK is primarily a parallel
hybrid. However, the platform is set-up so that LHS can be used as a preprocessing step prior to the
full-fledge optimization. It is of course possible to continue to use the results of subsequent LHS
runs throughout the optimization process; something that may be beneficial if a large number of
evaluation processors is available.

3.4. Control Strategy

The control strategy of hybrid algorithms can be either integrative or collaborative. In an purely
integrative approach, one individual algorithm is subordinate to or an embedded component of an-
other. Collaborative methods give equal importance and control to both algorithms. Algorithms
merely exchange information instead of being an integral part of one another. One of the most com-
mon algorithms that uses a collaborative control strategy combines highly similar (or homogeneous)
algorithms to optimize different parts of the feasible region in parallel. The hybrid approaches avail-
able in HOPSPACK are primarily collaborative.
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Chapter 4

HOPSPACK Algorithms

HOPSPACK currently includes four methods for generating new iterates. In this Chapter, we de-
scribe each in detail.

4.1. Generating Set Search (APPSPACK)

Generating set search (GSS) denotes a class of algorithms for bound and linearly constrained opti-
mization that obtain conforming search directions from generators of local tangent cones [28, 32].
A GSS falls into the category of direct search optimization methods [27] in which algorithms are
derivative-free and make no attempt to explicitly evaluate, estimate, or model local derivatives.
Derivative-free approaches tend to be more robust for problems that are noisy, honsmooth, discon-
tinuous, and/or contain undefined “feasible” points than their derivative-based counterparts which
often break down at points where derivatives cease to exist. It is important to note that this feature is
of direct search methods is both a strength and weakness. Without derivatives, such algorithms are
only practical for a small (e.g. typically less than a hundred) number of parameters. However, many
direct search algorithms, including GSS, offer rigorous convergence properties when derivatives do
in fact exists.

In the case that only bound constraints are present, GSS is identical to a pattern search optimiza-
tion algorithm. Pattern searches use a predetermined pattern of points to sample a given function
domain. Since the majority of the computational cost of pattern search methods is the function
evaluations, parallel pattern search (PPS) techniques have been developed to reduce the overall
computation time. Specifically, PPS exploits the fact that once the points in the search pattern have
been defined, the function values at these points can be computed simultaneously [8, 44]. The APPS
(Asynchronous Parallel Pattern Search) algorithm and corresponding APPSPACK software are one
variant of PPS specifically developed to address load balance issues in a parallel computing environ-
ment [21, 26, 29]. The APPS optimization algorithm has been shown to have identical convergence
properties to synchronous generating set search and can significantly reduce run time [22].

Implementation of the APPS algorithm is more complicated than a basic GSS in that it requires
careful bookkeeping. However, the details are irrelevant to the overall understanding of the hybrid
scheme that is the focus of this paper and thus we present a basic GSS in Algorithm 1. Interested
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reader are directed to [21, 26] for a detailed description and analysis of the APPS algorithm and
corresponding APPSPACK software.

Algorithm 1 A basic GSS algorithm
1. LetXxg be thestarting point
2: LetAg be theinitial step size
3: Let D be the set opositive spanning directions
4: while Not convergedio

5. Generate trial point§ = {X +Acdi| 1 <i<|D[}

6: wherely € [0,A] denotes maximum feasible step alahg

7 Evaluate trial points (possibly in parallel)

8 if 3xq € Qcsuch thatf (xq) — f(x) < aA? then

9: Xir1 = Xq > Iteration was successful
10: else
11: X1 = Xk > Iteration is unsuccessful
12: D1 =0/2 > Reduce step size
13: end if
14: end while

Note that in a basic GSS, after a successful iteration (one in which a new best point has been
found), the step size is either left unchanged or increased. In contrast, when the iteration was
unsuccessful, the step-size is necessarily reduced. A defining difference between the basic GSS and
APPS is that the APPS algorithm processes the directions independently, and each direction may
have its own corresponding step-size. Global convergence to locally optimal points is ensured using
asufficient decrease criterifor accepting new best points. A trial poit+ Ad; is considered better
than the current besy point if

f (x4 Ad) — f(x) < ah2?,

for a > 0. Because APPS processes search direction independently, it is possible that the current
best point is updated to a new better point before all the function evaluations associated with a
set of trial pointsQx have been completed. These results are referred typimned pointas

they are no longer tied to the current search pattern and attention must be paid to ensure that the
sufficient decrease criteria is applied appropriately. The support of these orphan points is a feature of
the APPS algorithm which makes it naturally amenable to a hybrid optimization structure. Iterates
generated by alternative algorithms can be simply be treated as orphans without the loss of favorable
theoretical properties or local convergence theory of APPS. Itis important to note that this paradigm
is in fact extensible to many other optimization routines.

4.2. Dividing Rectangles (DIRECT)

DIRECT, an acronym for Dlviding RECTangles, is a deterministic sampling algorithm developed
in [24] that performs global optimization on bound constrained problems. Since its introduction
in the early 1990’s, a significant number of papers have been written analyzing, describing, and
developing new variations of this highly effective algorithm. Some of these include [2,5, 6, 11—
15,23, 30,41, 46, 47].
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The basic DIRECT algorithm is outlined in Algorithm 2. Note that it requires that both the
upper and lower bounds are finite. As its name suggests, the DIRECT algorithm is a partitioning
algorithm that sequentially refines a rectangular partition of the feasible region at each iteration
selecting aroptimal hyper-rectangle to trisect. The algorithm begins by mapping the rectangular
feasible region onto the the unit hypercube; that is DIRECT optimizes the transformed problem

in f(X)=f(X+¢
min (%) = f(Stt-0) )
subjectto KX X<e

whereX = S™1(x — ¢) with S= diag(u; — f1,...,u, — ¢n). Figure 1 illustrates four iterations of
DIRECT for a two dimensional example. At each iteration, a candidate, potentially optimal, hyper-
rectangle is selected and refined. Though other stopping criteria exist, this process typically contin-
ues until a user defined budget of function evaluations has been expended.

1. while not convergedio

2: Let Sk denote the set of potentially optimal hyper-rectangles.
3 Select any hyper-rectangiefrom S; let c denote its center.

4: Generate trial points

Qk:{Ci;AkQ‘iGM}

Here M denotes the set of indices corresponding to sidd® of
with maximum lengthl.
5: Evaluate trial points.

6: Definew; = min(f(c+ %Aka), fc— %Aka)).

7 Beginning with smallesty; and working towards the largest,
trisectR along dimension.

8: end while

[ ] [ ]
(] [ J [ ] [ ] [ ] [ J [ J
| @ |
L o oo
[ J

Figure 4.1. DIRECT iteratively subdivides the optimal hyper-rectangle
into thirds.

Definition 1 describes the criteria for being a potentially optimal hyper-rectangle given a con-
stante > 0.
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Definition 1 (Potentially optimal hyper-rectangle [24]) Suppose there are K enumerated hyper-
rectangles subdividing the unit hypercube fr@®eq:nlptransformed]??eq:nlptransformed) with
centers ¢ 1 <i < K. Lety; denote the corresponding distance from the centén ds vertices. A
hyper-rectangle is considered potentially optimal if there existg > 0 such that

f(c)—akyr < f(c)—oaky, 1<i<K (4.2)
< (4.3)

f(cr) —akye Fmin_€|fmin|-

A
L
o o
=
©
>
o
2
s L
4]
a [ J
'®) o
[ ® Nonoptimal
O Potentially optimal
min
/ >
frain ~€lfmin! Rectangle size

Figure 4.2. Potentially optimal hyper-rectangles can be found by form-
ing the convex hull of the s€tf (¢;), Vi }, wherec; denotes the center point
of the ith hyper-rectangle ang the corresponding distance to hyper-
rectangle’s vertices.

The set of potentially optimal hyper-rectangles forms a convex hull for the set{fﬂqb,w}.
?7fig:dirhull]Figure ??fig:dirhull illustrates this. Notice that the user defined parametantrols
whether or not the algorithm performs more of a global or local search.

4.3. Treed Gaussian Process (TGP)

Statistical emulation can serve as an alternative to traditional optimization methods. To accomplish
this, the function values associated with previously evaluated iterates are used to train a statistical
model, and this model is used to draw inferences about the location of an optimum. The idea of
using a stochastic process to approximate an unknown function dates back as far aRoincar
the 19th century [9]. In particular, a Gaussian Process (GP) is typically used for the emulation of
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computer simulators [38, 39]. The output of the simulator is treated as a random vafiaptaat
depends on the input vectersuch that the response varies smoothly. This smoothness is given by
the covariance structure of the GP. The mean and covariance functions determine the characteristics
of the process, as any finite set of locations has a joint multivariate Gaussian distribution. For more
details about GPs, interested readers are directed to references such as [7] and [42]. A Bayesian
approach to GPs allows full estimation of uncertainty, which is useful when trying to determine the
probability that an unsampled location will be an improvement over the current known optimum.

Standard GP models have several drawbacks, including strong assumptions of stationarity and
poor computational scaling. To reduce these problems, treed Gaussian process (TGP) models par-
tition the domain using a recursive tree structure and then fit independent GP models within each
partition. An implementation of this idea is described in [16] and available in the formtgba
library for the open source statistical package R
(seenhttp://www.cran.r-project.org/src/contrib/Descriptions/tgp.html).

Within HOPSPACK, TGP can be used to build a globally oriented pattern of input locations.
The selection of candidates to be included in the hybrid scheme is based on predicted improvement
statistics at candidateinput locations)9(x) = max{ ( fpest— f(X))9,0}, wherefpest is the response
corresponding to the current best point, @nid a positive integer. In particular, a predetermined
numbem of locations can be chosen for evaluation through maximization (over a discrete candidate
set) of the expected multi-location improvemenf] ¥xg, . .. ,Xn)], where

19(X1,...,Xm) = max{ (fpest— T (x1))9, ..., (foest— f(Xm))%, 0}

[40].

4.4. Latin Hypercube Sampling (LHS)

A space filling sample of the bounded input region is required for the statistical generation of search
patterns in the previous section. In addition, it can be valuable to search the input space before
optimization begins in order to choose starting locations and build a decent training set for the
statistical model. The literature on this subject is vast (see for example [39] and references therein)
and specific application could depend on the modeling approach. We have used Latin hypercube
sampling (see for example [34]) as an efficient way to sample the input space. This is straightforward
to implement over any bounded region, and a design can be formed by taking independent LHS in
each input dimension and using the combined samples as a set of input vectors to be evaluated.
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Chapter 5

Software Paradigm

HOPSPACK supports hybrid optimization using a mediator/citizen/conveyor paradigm. Citizens
are used to denote arbitrary optimization tools or solvers: in this case, LHS, DIRECT, TGP, and
APPS. They communicate with a single mediator object, asynchronously exchanging unevaluated
trial points for completed function evaluations. A Citizen may choose to generate trial-point in-line
or on separate citizen-worker processors altogether.

The mediator ensures that points are evaluated in a predefined order specified by the users and
iteratively exchanges an ordered queue of unevaluated trial points for newly completed function
evaluations with a conveyor object. This mediator has no knowledge of the underlying optimization
problem and is only concerned with managing function evaluations. Three basic steps are performed
iteratively: 1) exchange evaluated points for unevaluated points with citizens, 2) prioritize the list of
requested evaluations, and 3) exchange unevaluated points for evaluated points with conveyor. This
process continues until either a maximum budget of evaluations has been reached or all citizens
have indicated they are finished. Along with a list of supported citizens, the user may provide a
corresponding priority list that the mediator will use when ordering the evaluation queue. Citizens
with higher priority will have their points moved towards the front of the evaluations queue, while
citizens with the same priority will be spliced.

The purpose of the conveyor is to evaluation points from a given queue of points provided by
the mediator asynchronously in parallel in FIFO. The conveyor seeks to maximize the efficient use
of available evaluation processors and to reduce as best as possible processor idle time. Thus while
evaluation processors run idle, the conveyor will submit points from the queue to be evaluated. The
conveyor also stores a function value cache that lexicographically stores a history of all completed
function evaluations using a splay tree as described in [21]; this prevents a linear increase in look
up time. Thus, prior to submitting a point to be evaluated, the cache is queried to determine if the
given point has already previously been evaluated. If the point is not currently cached, a second
guery is performed to determine if an equivalent point is currently being evaluated; if so, the point
is added to a pending list and awaits completion of the corresponding evaluation. The conveyor thus
guarantees that given a set of equivalent points, only one of these points will actually be evaluated,
while the rest are all assigned this returned value, regardless of submission time.

Using this paradigm, for the approach outlined in this paper, we use three citizens: LHS, DI-
RECT, and APPS. The LHS citizen is given highest priority and hence has all of the points (of its
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Mediator orders
trial points
Citizen List

Evaluation
Processors

Proc K

Conveyor
Asynchronous flow of W
trial points Function ¢ > -
Cache .
T —

Mediator returns
newly completed
evaluations

Figure 5.1. Points are submitted and evaluated asynchronously: no
method can force another to wait. Evaluation processors never run idle
unless all citizens have submitted empty trial point queues.

one time submission) are evaluated first. However, without load imbalance, the moment processors
become available that are no longer needed by LHS, DIRECT and APGSS begin the optimization
process. DIRECT and APGSS are given equal priority and hence points are spliced so that the trial-
point evaluation rate of each is roughly the same. An alternate ordering strategy would be to give
DIRECT higher priority in the evaluation queue early in the optimization process, and gradually
increase the importance of the APPS, the local solver. This could be based upon the number of
completed evaluations and the maximum allowed for a given solve.

An immediate benefit of this approach is load balance. While DIRECT can be ran in parallel,
it does suffer from load imbalance in that trial-points are submitted in batches. The next iteration
of DIRECT cannot continue until all points in the previous batch have completed. Thus, suppose
for example, that DIRECT submits 9 trial-points and 8 evaluations processors are available and
that each function evaluation takes 1 hour. Then after an hours time, 8 of these evaluations will be
complete. But DIRECT cannot continue until all 9 points in the current batch are completed; the
final point will thus take another hours time, letting 7 processors run idle the entire time. Thing
become even worse and more unpredictable when evaluation time is dramatically different, i.e.
points periodically crashing the simulation and returning immediately.

In contrast, using the current mediator/citizen/conveyor paradigm, in the previous example,
while direct is using only one processors, APGSS has all 7 processors at its disposal. Further,
because APGSS is asynchronous, any algorithm paired with APGSS in this manner creates a new
asynchronous hybrid. Extra solvers paired with APGSS may be seen simply as alternate means for
generating periodically generating new trial points.

Figure 5 illustrates the flow of trial points from the citizens, through the mediator, to the con-
veyor, and back to the citizens. The stream of trial-points is asynchronous in the sense that citizens
can always submit points at each iteration, they cannot however, force another citizen to wait if
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evaluation processors are available. H@ie Q,, andQ3 denote trial points submitted by citizens
LHS, DIRECT, and APPS respectively, whii@ is used to denote the ordered list of trial points
given to the conveyorR stores recently completed evaluations. Citizens are permitted to view all
completed function evaluations.
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Chapter 6

The Future of HOPSPACK

We have shown HOPSPACK to be quite successful on both test problems and real applications (see
[20, 31, 43]). Unfortunately, funding shortfalls have prevented us from preparing and releasing the
HOPSPACK software as an open source package for general use. However, research continues in
this area. The software ideas are being implemented for use as part of Sandia’s DAKOTA and ACRO
toolkits. The algorithms are being applied to groundwater management problems [18]. New funding
sources are being sought in the areas of statistics, optimization, sampling under uncertainty, risk
analysis, environmental clean-up and energy transportation. Interested readers should stay tuned
for future results.

21



References

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

Enrique Alba, editorParallel Metaheuristics John Wiley & Sons, Inc., 2005.

M. C. Bartholomew-Biggs, S. C. Parkhurst, and S. R. Wilson. Global optimization - stochastic
or deterministic? In K Albrecht, A; Steinhofel, edit@AGA 2003: 2nd Intl. Symposium on
Stochastic Algorithmssolume 2827 ot_ecture Notes in Computer Scienpages 125 — 137.
Springer-Verlag, 2003.

J. Castro, G. A. Gray, A. Guinta, and P. Hough. Developing a computationally efficient dy-
namic multilevel hybrid optimization scheme using multifidelity model interactions. Technical
Report SAND2005-7498, Sandia National Labs, Nov. 2005.

Joseph P. Castro, Genetha A. Gray, Anthony A. Giunta, and Patricia D. Hough. Developing a
computationally efficient dynamic multilevel hybrid optimization scheme using multifidelity
model interactions. Technical Report SAND2005-7498, Sandia National Laboratories, Albu-
quergue, New Mexico and Livermore, California, November 2005.

Lakhdar Chiter. Direct algorithm: A new definition of potentially optimal hyperrectangles.
Applied Mathematics and Computatidtv¥9(2):742—-749, 2006.

Steven E. Cox, William E. Hart, Raphael Haftka, and Layne Watson. DIRECT algorithm
with box penetration for improved local convergence. 9th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimizatioi2002. AIAA-2002-5581.

N. A. C. Cressie Statistics for Spatial Data, revised editiodohn Wiley & Sons, 1993.

J. E. Dennis, Jr. and V. Torczon. Direct search methods on parallel macBided.J. Optim,
1:448-474, 1991.

P. Diaconis. Bayesian numerical analysis. In S.S. Gupta and J.O. Berger, esfittisjcal
Decision Theory and Related Topics Springer-Verlag, 1988.

Shu-Kai S. Fan and Erwie Zahara. A hybrid simplex search and particle swarm optimization
for unconstrained optimizatiorcuropean Journal of Operational Researd81(2):527-548,
2007.

D. E. Finkel and C. T. Kelley. An adaptive restart implementation of direct. Technical Re-
port CRSC-TR04-30, Center for Research in Scientific Computation, North Carolina State
University, August 2004.

D. E. Finkel and C. T. Kelley. Convergence analysis of the DIRECT algorithm. Technical
Report CRSC-TR04-28, CSRC, NSCU, 2004.

22



[13] D. E. Finkel and C. T. Kelley. Additive scaling and the DIRECT algoritiinGlobal Optim,
36(4):597-608, 2006.

[14] J. M. Gablonsky.Modifications of the DIRECT algorithmPhD thesis, North Carolina State
University, 2001.

[15] J. M. Gablonsky and C. T. Kelley. A locally-biased form of the DIRECT algoritdnGlobal
Optim, 21(1):27-37, September 2001.

[16] Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed Gaussian process models with an
application to computer modelind. Amer. Statist. AssqR008. to appear.

[17] G. A. Gray et al. Designing dedicated experiments to support validation and calibration activ-
ities for the qualification of weapons electronics. Aroceedings of the 14th NECDQO007.
also available as Sandia National Labs Technical Report SAND2007-0553C.

[18] G. A. Gray, K. Fowler, and J. D. Griffin. Derivative-free optimization for hydrological appli-
cations, October 2008. Presentation at the INFORMS Annual Meeting in Washington D.C.;
slides available as SAND2008-7883P.

[19] G. A. Gray and K. R. Fowler. Approaching the groundwater remediation problem using multi-
fidelity optimization. InProc. of the CMWR XVI- Computational Methods in Water Resources
June 2006.

[20] G. A. Gray, M. Taddy, J. D. Griffin, M. Martinez-Canales, and H. K. H. Lee. Hybrid opti-
mization; A tool for model calibration. Technical Report SAND2008-0145J, Sandia National
Labs, 2008. submitted t8I1AM J. Optim.

[21] Genetha A. Gray and Tamara G. Kolda. Algorithm 856: APPSPACK 4.0: Asynchronous
parallel pattern search for derivative-free optimizati®kCM T. Math. Software32(3):485—
507, 2006.

[22] Joshua D. Griffin, Tamara G. Kolda, and Robert Michael Lewis. Asynchronous parallel gen-
erating set search for linearly-constrained optimization. Technical Report SAND2006-4621,
Sandia National Laboratories, Albuquerque, New Mexico and Livermore, California, August
2006.

[23] D R. Jones. The direct global optimization algorithm. Hncyclopedia of Optimizatign
volume 1, pages 431-440. Kluwer Academic Boston, 2001.

[24] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the
lipschitz constantJ. Optimiz. Theory App79(1):157-181, 1993.

[25] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives
on some classical and modern metho8BAM Rev.45(3):385-482, 2003.

[26] Tamara G. Kolda. Revisiting asynchronous parallel pattern search for nonlinear optimization.
SIAM J. Optimiz.16(2):563-586, December 2005.

[27] Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct search:
new perspectives on some classical and modern metis48/1 Rev.45(3):385-482, August
2003.

23



[28] Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Stationarity results for gen-
erating set search for linearly constrained optimizati®@AM J. Optimiz. 17(4):943-968,
2006.

[29] Tamara G. Kolda and Virginia Torczon. On the convergence of asynchronous parallel pattern
search.SIAM J. Optimiz.14(4):939-964, 2004.

[30] Chiter Lakhdar. Towards a new direct algorithm: a two-points based sampling method. Avail-
able fromhttp://www.optimization-online.org/DB_FILE/2005/03/1077.pdf, 2005.

[31] H. K. H. Lee, R. Grammacy, M. Taddy, and G. A. Grépplied Bayesian Analysishapter
Designing and Analyzing a circuit device experiment using treed Gaussian process. Oxford
University Press, to appear. currently available as SAND2008-3869P.

[32] Robert Michael Lewis, Anne Shepherd, and Virginia Torczon. Implementing generating set
search methods for linearly constrained minimization. Technical Report WM-CS-2005-01,
Department of Computer Science, College of William & Mary, Williamsburg, VA, July 2005.
Revised July 2006.

[33] M. Martinez-Canales et al. Penetrator reliability investigation and design exploration: From
conventional design processes to innovative uncertainty-capturing algorithms. Technical Re-
port RAA5248161, Sandia National Labs, Nov. 2006.

[34] M. D. McKay, W. J. Conover, and R. J. Beckman. A comparison of three methods for selecting
values of input variables of output from a computer cotechnometrics22:239-245, 1979.

[35] Joshua L. Payne and Margaret J. Eppstein. A hybrid genetic algorithm with pattern search for
finding heavy atoms in protein crystals. GBECCO '05: Proceedings of the 2005 conference
on Genetic and evolutionary computatjgrages 377-384, New York, NY, USA, 2005. ACM.

[36] Jakob Puchinger andi@ther R. Raidl. Combining metaheuristics and exact algorithms in
combinatorial optimization: A survey and classification. IWMINAC: Proceedings of First
International Work-conference on the Interplay between Natural and Artificial Computation
pages 41-53, 2005.

[37] Gunther R. Raidl. A unified view on hybrid metaheuristics. HM06: Third International
Workshop on Hybrid Metaheuristicgages 1-12, 2006.

[38] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis of computer experi-
ments.Statist. Scj.4:409-435, 1989.

[39] T.J. Santner, B.J. Williams, and W.I. Nofzhe Design and Analysis of Computer Experiments
Springer-Verlag, 2003.

[40] M. Schonlau, W. Welch, and D. Jones. Global versus local search in constrained optimiza-
tion of computer models. In N. Flournoy, W. Rosenberger, and W. Wong, edNexs,De-
velopments and Applications in Experimental Desigolume 34, pages 11-25. Institute of
Mathematical Statistics, 1998.

[41] E. S. Siah, M. Sasena, J. L. Volakis, P. Y. Papalambros, and R. W. Wiese. Fast parameter op-
timization of large-scale electromagnetic objects using DIRECT with Kriging metamodeling.
IEEE T. Microw. Theory52(1):276 — 285, January 2004.

24



[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

Michael L. Stein.Interpolation of Spatial DataSpringer, New York, NY, 1999.

M. Taddy, H. K. H. Lee, G. A. Gray, and J. D. Griffin. Bayesian guided pattern search for
robust local optimization. Technical Report SAND2008-0104J, Sandia National Labs, 2008.
submitted toTechnometrics

V. Torczon. PDS: Direct search methods for unconstrained optimization on either sequential
or parallel machines. Technical Report TR92-09, Rice Univ., Dept. Comput. Appl. Math.,
Houston, TX, 1992.

A. Ismael F. Vaz and Lus N. Vicente. A particle swarm pattern search method for bound
constrained nonlinear optimization. Technical report, Department of Mathematics, University
of Coimbra, 2006.

K. P. Wachowiak and T. M. Peters. Combining global and local parallel optimization for
medical image registration. In JM Fitzpatrick, JM; Reinhardt, editedical Imaging 2005:
Image Processingrolume 5747, pages 1189 — 1200. SPIE, April 2005.

M. P. Wachowiak and T. M. Peters. Parallel optimization approaches for medical image reg-
istration. INMICCAI 2004: 7th International Conference on Medical Image Computing and
Computer-Assisted Interventiomolume 3216 ofLecture Notes in Computer Sciengages

781 — 788. Springer-Verlag, 2004.

Peng Yehui and Liu Zhenhai. A derivative-free algorithm for unconstrained optimization.
Applied Mathematics - A Journal of Chinese Universijt3(4):491-498, December 2007.

T. Zhang, K. K. Choi, S. Rahman, K. Cho, P. Baker, M. Shakil, and D. Heitkamp. A hybrid sur-
rogate and pattern search optimization method and application to microelectiStnigsural
and Multidisciplinary Optimization32(4):327—-345, October 2006.

25



DISTRIBUTION:

1

MS 9159

Genetha Gray, 8964
MS 9159

Patty Hough, 8964
MS 9159

Tammy Kolda, 8962
MS 9159

Heidi Ammerlahn, 8962
MS 9152

Mike Hardwick, 8964
MS 1318

Laura Swiler, 1411
MS 1318

Mike Eldred, 1411

26

MS 1318
Jim Stewart, 1411

MS 1318
Bill Hart, 1412

MS 0370
John Siirola, 1433

MS 9018
Central Technical Files, 8945-1

MS 0899
Technical Library, 9616

MS 0612
Review & Approval Desk, 9612

MS 0123
D. Chavez, LDRD Office, 1011



